Flux Kontext API
Flux Kontext is an AI image tool by Black Forest Labs, enabling precise editing and generation via natural language commands.
Basic API Configuration
Base URL: https://api.foxaihub.com/api/v2
Headers Parameters:
{
"api-key": "Your API Key",
}
Notes
The images generated by this API will only be saved for 24 hours, after which they will be deleted by the system. At that time, you will not be able to access the image via the URL.
Flux-Kontext Task
Path: /flux-kontext/pro/generate
or /flux-kontext/max/generate
Method: POST
Type: application/json
Model Options:
pro
: Standard model - $0.025 per generationmax
: Premium model with enhanced quality - $0.05 per generation (double price)
Parameters:
Parameter Name | Type | Description | Remarks |
---|---|---|---|
prompt | String | Text description of the image processing task | Required. The prompt should describe the desired image processing in detail |
input_image | String | Input image for processing | Required. Can be either a base64 encoded image (with data URL prefix like data:image/jpeg;base64,{base64_data} ) or an HTTP URL to an image. Base64 image size must not exceed 10MiB |
aspect_ratio | String | Output image aspect ratio | Optional. Options: "match_input_image", "1:1", "16:9", "9:16", "4:3", "3:4", "3:2", "2:3", "4:5", "5:4", "21:9", "9:21", "2:1", "1:2". Default: "match_input_image" |
seed | Integer | Random seed for reproducible results | Optional. Use the same seed to get consistent outputs |
Example Request:
POST /flux-kontext/pro/generate HTTP/1.1
Content-Type: application/json
api-key: your_api_key_here
{
"prompt": "Restore and colorize this image. Remove any scratches or imperfections",
"input_image": "https://cdn2.foxai.me/flux-kontext-12/Tesla.JPG"
}
Example Request with Base64 Image:
POST /flux-kontext/pro/generate HTTP/1.1
Content-Type: application/json
api-key: your_api_key_here
{
"prompt": "Restore and colorize this image. Remove any scratches or imperfections",
"input_image": "..."
}
Example Request with Base64 Image:
POST /flux-kontext/pro/generate HTTP/1.1
Content-Type: application/json
api-key: your_api_key_here
{
"prompt": "Restore and colorize this image. Remove any scratches or imperfections",
"input_image": "..."
}
Example Response:
{
"id": "f3hfma0ppnrm80cq6r8rhawj0w",
"error": null,
"created_at": "2025-06-03T13:52:59.061Z",
"output": "https://cdn2.foxai.me/flux-kontext-11/f3hfma0ppnrm80cq6r8rhawj0w.png"
}
Example Python Code:
import requests
import base64
import json
import os
def create_flux_kontext_task(image_path="Tesla.JPG", prompt="Restore and colorize this image. Remove any scratches or imperfections"):
"""
Create a flux-kontext task using local image file encoded as base64
Args:
image_path (str): Path to the image file (default: "Tesla.JPG")
prompt (str): The prompt for image processing
Returns:
dict: API response
"""
base_url = "https://api.foxaihub.com/api/v2"
api_key = "your api key"
# Check if image file exists
if not os.path.exists(image_path):
raise FileNotFoundError(f"Image file not found: {image_path}")
# Read and encode image as base64
with open(image_path, "rb") as image_file:
image_data = base64.b64encode(image_file.read()).decode('utf-8')
# Add data URL prefix for base64 image
base64_image = f"data:image/jpeg;base64,{image_data}"
# Prepare request
url = f"{base_url}/flux-kontext/pro/generate"
headers = {
"Content-Type": "application/json",
"api-key": api_key
}
payload = {
"prompt": prompt,
"input_image": base64_image
}
# Make request
try:
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
print(f"Request failed: {e}")
if hasattr(e.response, 'text'):
print(f"Response: {e.response.text}")
raise
if __name__ == "__main__":
# Example usage
try:
result = create_flux_kontext_task()
print("Task created successfully:")
print(json.dumps(result, indent=2))
except Exception as e:
print(f"Error: {e}")